A Plug-and-Play Priors Framework for Hyperspectral Unmixing
نویسندگان
چکیده
Spectral unmixing is a widely used technique in hyperspectral image processing and analysis. It aims to separate mixed pixels into the component materials their corresponding abundances. Early solutions spectral are performed independently on each pixel. Nowadays, investigating proper priors problem has been popular as it can significantly enhance performance. However, nontrivial handcraft powerful regularizer, complex regularizers may introduce extra difficulties solving optimization problems which they involved. To address this issue, we present plug-and-play (PnP) framework for unmixing. More specifically, use alternating direction method of multipliers (ADMM) decompose two iterative subproblems. One regular depending forward model, other proximity operator related prior model be regarded an denoising problem. Our flexible extendable allows wide range denoisers replace models avoids handcrafting regularizers. Experiments conducted both synthetic data real airborne illustrate superiority proposed strategy compared with state-of-the-art methods.
منابع مشابه
کنترل توان منابع تولید پراکنده با قابلیت plug and play
در دو دهه گذشته، مسائلی مانند گرمایش زمین و آلودگی هوا و از طرف دیگر افزایش تقاضا برای انرژی برق، دست اندرکاران و تصمیم گیرندگان صنعت برق را براین داشته که به سوی تولید انرژی برق از منابع انرژی تجدید پذیر مانند انرژی خورشیدی، بادی و همچنین تکنولوژی های جدیدتر مانند پیل های سوختی گام بردارند. در این پایان نامه کنترل توان منابع تولید پراکنده مورد بررسی قرار گرفته است. کنترل توان پیل سوختی متصل به...
A Novel Iterative Thresholding Algorithm Based on Plug-and-Play Priors for Compressive Sampling
We propose a novel fast iterative thresholding algorithm for image compressive sampling (CS) recovery using three existing denoisers—i.e., TV (total variation), wavelet, and BM3D (block-matching and 3D filtering) denoisers. Through the use of the recently introduced plug-and-play prior approach, we turn these denoisers into CS solvers. Thus, our method can jointly utilize the global and nonloca...
متن کاملA parallel unmixing algorithm for hyperspectral images
We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separ...
متن کاملUnmixing Hyperspectral Data
In hyperspectral imagery one pixel typically consists of a mixture of the re ectance spectra of several materials, where the mixture coe cients correspond to the abundances of the constituting materials. We assume linear combinations of re ectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reectance c...
متن کاملHyperspectral Eels Image Unmixing
Y. Altmann, N. Brun , N. Dobigeon , K. March, S. Moussaoui, O. Schneegans 1School of Engineering and Physical Sciences, Heriot-Watt University Earl Mountbatten Building, Riccarton, EH14 4AS, Edinburgh, U.K. Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris-Sud, Univ. Paris-Saclay Bât. 510, 91405 Orsay Cedex, France University of Toulouse, IRIT/INP-ENSEEIHT/TéSA 2 rue Charles Camic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2022
ISSN: ['0196-2892', '1558-0644']
DOI: https://doi.org/10.1109/tgrs.2020.3047479